Merging Allosteric and Active Site Binding Motifs: De novo Generation of Target Selectivity and Potency via Natural-Product-Derived Fragments

نویسندگان

  • Jan Lanz
  • Rainer Riedl
چکیده

The de novo design of molecules from scratch with tailored biological activity is still the major intellectual challenge in chemical biology and drug discovery. Herein we validate natural-product-derived fragments (NPDFs) as excellent molecular seeds for the targeted de novo discovery of lead structures for the modulation of therapeutically relevant proteins. The application of this de novo approach delivered, in synergy with the combination of allosteric and active site binding motifs, highly selective and ligand-efficient non-zinc-binding (3: 4-{[5-(2-{[(3-methoxyphenyl)methyl]carbamoyl}eth-1-yn-1-yl)-2,4-dioxo-1,2,3,4-tetrahydropyrimidin-1-yl]methyl}benzoic acid) as well as zinc-binding (4: 4-({5-[2-({[3-(3-carboxypropoxy)phenyl]methyl}carbamoyl)eth-1-yn-1-yl]-2,4-dioxo-1,2,3,4-tetrahydropyrimidin-1-yl}methyl)benzoic acid) uracil-based MMP-13 inhibitors presenting IC50 values of 11 nM (3: LE=0.35) and 6 nM (4: LE=0.31).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fragment-Based Approaches to the Development of Mycobacterium tuberculosis CYP121 Inhibitors

The essential enzyme CYP121 is a target for drug development against antibiotic resistant strains of Mycobacterium tuberculosis. A triazol-1-yl phenol fragment 1 was identified to bind to CYP121 using a cascade of biophysical assays. Synthetic merging and optimization of 1 produced a 100-fold improvement in binding affinity, yielding lead compound 2 (KD = 15 μM). Deconstruction of 2 into its co...

متن کامل

Therapeutic Discovery Evaluating the Therapeutic Potential of a Non-Natural Nucleotide That Inhibits Human Ribonucleotide Reductase

Human ribonucleotide reductase (hRR) is the key enzyme involved in de novo dNTP synthesis and thus represents an important therapeutic target against hyperproliferative diseases, most notably cancer. The purpose of this study was to evaluate the ability of non-natural indolyl-20-deoxynucleoside triphosphates to inhibit the activity of hRR. The structural similarities of these analogues with dAT...

متن کامل

Clustering of Short Read Sequences for de novo Transcriptome Assembly

Given the importance of transcriptome analysis in various biological studies and considering thevast amount of whole transcriptome sequencing data, it seems necessary to develop analgorithm to assemble transcriptome data. In this study we propose an algorithm fortranscriptome assembly in the absence of a reference genome. First, the contiguous sequencesare generated using de Bruijn graph with d...

متن کامل

Evaluating the therapeutic potential of a non-natural nucleotide that inhibits human ribonucleotide reductase.

Human ribonucleotide reductase (hRR) is the key enzyme involved in de novo dNTP synthesis and thus represents an important therapeutic target against hyperproliferative diseases, most notably cancer. The purpose of this study was to evaluate the ability of non-natural indolyl-2'-deoxynucleoside triphosphates to inhibit the activity of hRR. The structural similarities of these analogues with dAT...

متن کامل

P-244: Analysis of Genomic and Cell Free DNA of A let-7 microRNA Binding Site of KRAS Gene Polymorphisms in Endometriosis

Background: Endometriosis is one of the most common benign gynecological diseases which is characterized by endometriallike tissue growing outside the uterine cavity. Although the pathology of endometriosis remains unknown, the genetic predisposition plays an apparent role. Several genes have been contributed to endometriosis, but it seems KRAS has a crucial role, because its activation results...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2015